RTC модуль DS1307 подключение к Arduino. Подключение часов реального времени ds1302 к Arduino Подключение tiny rtc i2c к arduino uno

В статье вы познакомитесь с отличным модулем часов реального времени на батарейке.

С помощью этого модуля можно отслеживать время в ваших проектах на Arduino даже в случае перепрограммирования или отключения питания. Это один из необходимых элементов для проектов будильников, сигнализаций, снятия показаний с датчиков в режиме реального времени. Одна из самых популярных моделей модуля часов реального времени - DS1307. Именно на нем мы и остановимся. Модуль отлично сочетается с микроконтроллерами Arduino, на которых питание логики равно 5 В.

Особенности модуля от компании-производителя Adafruit (китайцы предлагают аналогичные варианты раза в три-четыре дешевле):

  • Все включено: чип, обвязка, батарейка;
  • Легко собирается и прост в использовании;
  • Устанавливается на любую макетную плату или подключается напрямую с помощью проводов;
  • Есть отличные библиотеки и скетчи-примеры;
  • Два отверстия для монтажа;
  • Продолжительность работы - около пяти лет!

Модуль часов реального времени может быть уже распаянным, а может продаваться в виде отдельных комплектующих, пайка которых займет около 15-ти минут, не более.

Что такое часы реального времени?

Часы реально времени - это... часы. Модуль работает от автономного питания - батарейки и продолжает вести отсчет времени, даже если на вашем проекте на Arduino пропало питание. Используя модуль реального времени, вы можете отслеживать время, даже если вы захотите внести изменения в ваш скетч и перепрограммировать микроконтроллер.

На большинстве микроконтроллеров, в том числе и Arduino, есть встроенный счетчик временни, который называется millis(). Есть и встроенные в чип таймеры, которые могут отслеживать более длительные промежутки времени (минуты или дни). Так зачем же вам отдельным модуль часов? Основная проблема в том, что millis() отслеживает время только с момента подачи питания на Arduino. То есть, как только вы отключили плату, таймер сбрасывается в 0. Вша Arduino не знает, что сейчас, например, четверг или 8-е марта. Все, чего вы можете добиться от встроенного счетчика - это "Прошло 14000 миллисекунд с момента последнего включения".

Например вы создали программу и хотите вести отсчет времени с этого момента. Если вы отключите питание микроконтроллера, счетчик времени собьется. Примерно так, как это происходит с дешевыми китайскими часами: когда садится батарейка, они начинают мигать с показанием 12:00.

В некоторых проектах Arduino вам понадобится надежный контроль времени без прерываний. Именно в таких случаях используется внешний модуль часов реального времени. Чип, который используется в подобных часах, отслеживает года и даже знает сколько дней в месяце (единственно, что обычно не учитывается - это переход на летнее и зимнее время, так как подобные переводы разные в разных частях мира).

На рисунке ниже показана материнская плата компьютера с часами реального времени DS1387. В часах используется литиевая батарея, поэтому они разрослись в размерах.

Мы рассмотрим пример использования часов реального времени DS1307. Это дешевый, легкий в использовании модуль, который работает несколько лет от небольшой батарейки.

Пока батарейка в самом модуле не исчерпает свой заряд, DS1307 будет вести отсчет времени, даже если Arduino отключен от питания или перепрограммируется.

Узлы, из которых состоит модуль часов реального времени

Детали модуля часов реального времени DS1307 от компании Adafruit
Рисунок Обозначение Описание Производитель Количество
IC2 Чип часов реального времени DS1307 1
Q1 32.768 КГц, 12.5 пФ кристалл Generic 1
R1, R2 1/4 Вт 5% 2.2 КОм резистор Красный, Красный, Красный, Золотой Generic 2
C1 0.1 мкФ керамический конденсатор Generic 1
Рельса на 5 контактов (1x5) Generic 1
Батарейка 12 мм 3 В литиевая батарейка CR1220 1
12mm coin cell holder Keystone 3001 1
Плата Adafruit Industries 1

Сборка модуля часов реального времени

Сборка часов реального времени DS1307 компании Adafruit
Фото Пояснения

Подготовьтесь к сборке. Проверьте наличие всех необходимых деталей и инструментов. Установите монтажную плату в тисках.

Нанесите немного припоя на отрицательный контакт батареи.

Установите два резистора 2.2 КОм и керамический конденсатор. Как именно вы их расположите - неважно. Полярность не имеет значения. После этого установите кристалл (также симметрично), держатель (холдер) для батарейки и чип часов реального времени. Чип модуля реального времени надо установить таким образом, чтобы отметка (паз) на чипе располагалась в соответствии с обозначением на монтажной плате. Внимательно посмотрите на фото слева, там чип установлен верно.


Чтобы холдер для батарейки не выпадал, лучше его припаять сверху. После этого переверните плату и и припаяйте оставшиеся контакты.

Удалите остатки контактов от резисторов, кристалла и конденсатора.

Если вы хотите использовать контакты для установки модуля на беспаечную монтажную плату, установите рельсу контактов на макетку, модуль часов реального времени сверху и припаяйте контакты.

Установите батарейку. Плоская часть батареи должна быть сверху. В среднем батарейка будет служить около 5 лет. Даже если батарейка села, не оставляйте слот для нее пустым.

Библиотека Arduino для работы с DS1307

DS1307 легко подключается к любому микроконтроллеру с питанием логики 5 В и возможностью I2C подключения. Мы рассмотрим подключение и использование этого модуля с Arduino .

Будем использовать библиотеку RTClib для получения и настройки показаний с DS1307. Если у вас есть вопросы по учтановке дополнительных библиотек Arduino - ознакомьтесь с этой инструкцией .

В статье рассмотрен пример часов реального времени от Adafruit, но вы можете с тем же успехом использовать китайские аналоги. Принцип работы и подключения не отличается.

  • КУПИТЬ Arduino Uno R3 ;
  • КУПИТЬ Breadboard ;
  • КУПИТЬ модуль часов реального времени DS1307 ;

На часах реального премени 5 пинов: 5V, GND, SCL, SDA и SQW.

  • 5V используется для питания чипа модуля часов реального времени, когда вы делаете к нему запрос для получения данных о времени. Если сигнал 5 В не поступает, чип переходит в "спящий" режим.
  • GND - общая земля. Обязательно подключается в схему.
  • SCL - контакт i2c часов - необходим для обмена данными с часами реального времени.
  • SDA - контакт, по которому через i2c передаются данные с часов реального времени.
  • SQW дает возможность настроить вывод данных в виде square-wave. В большинстве случаев этот контакт не используется.

Если вы настроили аналоговый пин 3 (цифровой 17) в режим OUTPUT и HIGH, а аналоговый пин 2 (цифровой 16) в режим OUTPUT и LOW, вы можете запитывать часы реального времени непосредственно от этих контактов!

Подключите аналоговый пин 4 на Arduino к SDA. Аналоговый пин 5 на Arduino подключите к SCL.


Скетч для Arduino

Проверка часов реального времени

Первый скетч, который стоит запустить - это программа, которая будет считывать данные с модуля часов реального времени раз в секунду.

Для начала давайте посмотрим, что произойдет, если мы извлечем батарейку и заменим ее на другую, пока Arduino не подключен к USB. Подождите 3 секунды и извлеките батарейку. В результате чип на часах реального времени перезагрузится. После этого вставьте код, который приведен ниже (код также можно выгрузить в меню Examples→RTClib→ds1307 в Arduino IDE) и загрузите его на Arduino.

Вам также понадобится библиотека OneWire.h, скачть ее можно

.

// функции даты и времени с использованием часов реального времени DS1307, подключенные по I2C. В скетче используется библиотека Wire lib

#include <Wire.h>

#include "RTClib.h"

Serial.begin(57600);

if (! RTC.isrunning()) {

Serial.println("RTC is NOT running!");

// RTC.adjust(DateTime(__DATE__, __TIME__));

DateTime now = RTC.now();

Serial.print("/");

Serial.print("/");

Serial.print(now.day(), DEC);

Serial.print(" ");

Serial.print(":");

Serial.print(":");

Serial.println();

Serial.print(now.unixtime());

Serial.print("s = ");

Serial.println("d");

// рассчитываем дату: 7 дней и 30 секунд

DateTime future (now.unixtime() + 7 * 86400L + 30);

Serial.print(" now + 7d + 30s: ");

Serial.print(future.year(), DEC);

Serial.print("/");

Serial.print(future.month(), DEC);

Serial.print("/");

Serial.print(future.day(), DEC);

Serial.print(" ");

Serial.print(future.hour(), DEC);

Serial.print(":");

Serial.print(future.minute(), DEC);

Serial.print(":");

Serial.print(future.second(), DEC);

Serial.println();

Serial.println();

Теперь откройте окно серийного монитора и убедитесь, что скорость передачи данных установлена корректно: на 57600 bps.

В результате вы должны увидеть в окне серийного монитора примерно следующее:


Если в часах реального времени пропадет питание, отобразится 0:0:0. Секунды отсчитываться перестанут. После настройки времени, пойдет новый отсчет. Именно по этой причине извлекать батарейку во время работы модуля часов реального времени нельзя.

Настройка времени на модуле часов

В этом же скетче раскомментируйте строку, которая начинается с RTC.adjust:

// строка ниже используется для настройки даты и времени часов

RTC.adjust(DateTime(__DATE__, __TIME__));

Процесс настройки даты и времени реализован очень элегантно. В эту строку попадают данные с вашего счетчика на персональном компьютере (в момент компилляции кода). Эти данные используются для прошивки вашего модуля часов реального времени. То есть, если время на вашем ПК настроено неверно, рекомендуем сначала исправить этот баг, а потом переходить к прошивке модуля часов для Arduino.

После настройки, откройте серийный монитор и убедитесь, что часы настроены корректно:


Все. С этого момента и на протяжении ближайших нескольких лет настраивать DS1307 не придется.

Считывание показаний времени с DS1307

После настройки часов реального времени DS1307, может отправлять к ним запросы. Давайте рассмотрим часть скетча, в которой реализованы эти запросы.

DateTime now = RTC.now();

Serial.print(now.year(), DEC);

Serial.print("/");

Serial.print(now.month(), DEC);

Serial.print("/");

Serial.print(now.day(), DEC);

Serial.print(" ");

Serial.print(now.hour(), DEC);

Serial.print(":");

Serial.print(now.minute(), DEC);

Serial.print(":");

Serial.print(now.second(), DEC);

Serial.println();

По сути существует один вариант для получения времени с использованием часов реального времени. Для этого используется функция now(), которая возвращает объект DateTime. В этом объекте содержаться данные про год, месяц, день, час, минуту и секунду.

Есть ряд библиотек для часов реального времени, в которых предусмотрены функции вроде RTC.year() и RTC.hour(). Эти функции вытягивают отдельно год и час. Но их использование сопряжено с рядом проблем: если вы сделаете запрос на вывод минут в момент времени, например, 3:14:59, то есть, прямо перед тем как показания минут должны приравняться к "15" (3:15:00), полученные данные будут равны 3:14:00 - то есть, вы потеряете одну минуту.

В общем, использование отдельных функций для вызова часа или года обосновано только в том случае, когда точность контроля времени с разбросом в одну минуту/года для вашего проекта не критична (как правило, это в тех случаях, когда показания снимаются редко - раз в сутки, раз в неделю). В любом случае, если вы хотите избежать погрешностей в показаниях, используйте now(), а уже из полученных данных тяните необходимые вам показания (минуты, года и т.п.).

Есть еще один формат данных, которые мы можем подучить - количество секунд от полуночи, 1-го января 1970 года. Для этого используется функция unixtime ():

Serial.print(" since 1970 = ");

Serial.print(now.unixtime());

Serial.print("s = ");

Serial.print(now.unixtime() / 86400L);

Serial.println("d");

Так как в одном дне 60*60*24 = 86400 секунд, можно перевести полученное значение в дни и года. Очень удобный вариант, если вам надо отследить, сколько времени прошло с момента последнего запроса. Например, если прошло 5 минут с момента последнего последнего обращения Arduino к часам реального времени DS1307, значение, которое вернет функция unixtime() будет больше на 300.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

DS1307 это небольшой модуль, предназначенный для подсчета времени. Собранный на базе микросхемы DS1307ZN с реализацией питания от литиевой батарейки (LIR2032), что позволяет работать автономно в течение длительного времени. Также на модуле, установлена энергонезависимая память EEPROM объемом 32 Кбайт (AT24C32). Микросхема AT24C32 и DS1307ZN связаны обшей шиной интерфейсом I2C.

Технические параметры

Напряжение питания: 5В
Рабочая температура: – 40℃ … + 85℃
Память: 56 байт (энергонезависимая)
Батарейка: LIR2032 (автоматическое определение источника питания)
Интерфейса: I2C
Габариты: 28мм х 25мм х 8 мм

Общие сведения

Использовании модуля DS1307 зачастую очень оправдано, например, когда данные считываются редко, интервалом более недели, использовать собственные ресурсы контроллера, неоправданно или невозможно. Обеспечивание бесперебойное питание, например платы Arduino, на длительный срок дорого, даже при использовании батареи.
Благодаря собственной памяти и автономностью, можно регистрировать события, (при автономном питании) например изменение температуры и так далее, данные сохраняются в памяти их можно считать из памяти модуля. Так что модуль DS1307 часто используют, когда контроллерам Arduino необходимо знать точное время, для запуска какого то события и так далее.

Обмен данными с другими устройствами осуществляется по интерфейсу I2C с выводов SCL и SDA. Конденсаторы С1 и С2 необходимы для снижения помех по линию питания. Чтобы обеспечить надлежащего уровня сигналов SCL и SDA установлены резисторы R2 и R3 (подтянуты к питанию). Для проверки работоспособности модуля, на вывод 7 микросхему DS1307Z, подается сигнал SQ, прямоугольной формы с частотой 1 Гц. Элементы R4, R5, R6, VD1 необходимы для подзарядку литиевой батарейки. Так же, на плате предусмотрено посадочное место (U1), для установки датчика температуры DS18B20 (при необходимости можно впаять его), считывать показания, можно с вывода DS, который подтянут к пиатнию, через резистор R1 сопротивлением 3.3 кОм. Принципиальную схему и назначение контактов можно посмотреть на рисунках ниже.

На плате расположено две группы контактов, шагом 2.54 мм, для удобного подключения к макетной плате, буду использовать штырьевые разъемы, их необходимо впаять.

Первая группа контактов:
DS: вывод DS18B20 (1-wire)


VCC: «+» питание модуля
GND: «-» питание модуля

Вторая группа контактов:
SQ: вход 1 МГц
DS: вывод DS18B20 (1-wire)
SCL: линия тактирования (Serial CLock)
SDA: линия данных (Serial Dфta)
VCC: «+» питание модуля
GND:«-» питание модуля
BAT:

Подзарядка батареи
Как описывал ваше модуль может заряжать батарею, реализовано это, с помощью компонентов R4, R5, R6 и диода D1. Но, данная схема имеет недостаток, через резистор R4 и R6 происходит разряд батареи (как подметил пользователь ALEXEY, совсем не большой). Так как модуль потребляем незначительный ток, можно удалить цепь питания, для этого убираем R4, R5, R6 и VD1, вместо R6 поставим перемычку (после удаления компонентов, можно использовать обычную батарейку CR2032).

Подключение DS1307 к Arduino

Необходимые детали:
Arduino UNO R3 x 1 шт.
Провод DuPont, 2,54 мм, 20 см x 1 шт.
Кабель USB 2.0 A-B x 1 шт.
Часы реального времени RTC DS1307 x 1 шт.

Подключение:
Для подключения часы реального времени DS1307, необходимо впаять впаять штыревые разъемы в первую группу контактов. Далее, подключаем провода SCL (DS1307) к выводу 4 (Arduino UNO) и SDA (DS1307) к выводу 5 (Arduino UNO), осталось подключить питания VCC к +5V и GND к GND. Кстати, в различных платах Arduino вывода интерфейса I2C отличаются, назначение каждого можно посмотреть ниже.

Установка времени DS1307
Первым делом, необходимо скачать и установить библиотеку «DS1307RTC» и «TimeLib» в среду разработки IDE Arduino, далее необходимо настроить время, открываем пример из библиотеки DS1307RTC «Файл» —> «Примеры» —> «DS1307RTC» —> «SetTime» или копируем код снизу.

// Подключаем библиотеку DS1307RTC const char *monthName = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; tmElements_t tm; void setup() { bool parse=false; bool config=false; // get the date and time the compiler was run if (getDate(__DATE__) && getTime(__TIME__)) { parse = true; // and configure the RTC with this info if (RTC.write(tm)) { config = true; } } Serial.begin(9600); while (!Serial) ; // wait for Arduino Serial Monitor delay(200); if (parse && config) { Serial.print("DS1307 configured Time="); Serial.print(__TIME__); Serial.print(", Date="); Serial.println(__DATE__); } else if (parse) { Serial.println("DS1307 Communication Error:-{"); Serial.println("Please check your circuitry"); } else { Serial.print("Could not parse info from the compiler, Time=\""); Serial.print(__TIME__); Serial.print("\", Date=\""); Serial.print(__DATE__); Serial.println("\""); } } void loop() { } bool getTime(const char *str) { int Hour, Min, Sec; if (sscanf(str, "%d:%d:%d", &Hour, &Min, &Sec) != 3) return false; tm.Hour = Hour; tm.Minute = Min; tm.Second = Sec; return true; } bool getDate(const char *str) { char Month; int Day, Year; uint8_t monthIndex; if (sscanf(str, "%s %d %d", Month, &Day, &Year) != 3) return false; for (monthIndex = 0; monthIndex < 12; monthIndex++) { if (strcmp(Month, monthName) == 0) break; } if (monthIndex >= 12) return false; tm.Day = Day; tm.Month = monthIndex + 1; tm.Year = CalendarYrToTm(Year); return true; }

Скачать скетч

Загружаем данную скетч в контроллер Arduino (время берется с ОС), открываем «Мониторинг порта»

Программа
В библиотеке есть еще один пример, открыть его можно DS1307RTC «Файл» —> «Примеры» —> «DS1307RTC» —> «ReadTest»

/* Тестирование производилось на Arduino IDE 1.6.12 Дата тестирования 23.11.2016г. */ #include // Подключаем библиотеку Wire #include // Подключаем библиотеку TimeLib #include // Подключаем библиотеку DS1307RTC void setup() { Serial.begin(9600); // Устанавливаем скорость передачи данных while (!Serial) ; // Ожидаем подключение последовательного порта. Нужно только для Leonardo delay(200); // Ждем 200 мкс Serial.println("DS1307RTC Read Test"); // Выводим данные на последовательный порт Serial.println("-------------------"); // Выводим данные на последовательный порт } void loop() { tmElements_t tm; if (RTC.read(tm)) { Serial.print("Ok, Time = "); print2digits(tm.Hour); Serial.write(":"); print2digits(tm.Minute); Serial.write(":"); print2digits(tm.Second); Serial.print(", Date (D/M/Y) = "); Serial.print(tm.Day); Serial.write("/"); Serial.print(tm.Month); Serial.write("/"); Serial.print(tmYearToCalendar(tm.Year)); Serial.println(); } else { if (RTC.chipPresent()) { Serial.println("The DS1307 is stopped. Please run the SetTime"); Serial.println("example to initialize the time and begin running."); Serial.println(); } else { Serial.println("DS1307 read error! Please check the circuitry."); Serial.println(); } delay(9000); } delay(1000); } void print2digits(int number) { if (number >= 0 && number < 10) { Serial.write("0"); } Serial.print(number); }

Скачать скетч

Загружаем данную код в контроллер Arduino, открываем «Мониторинг порта»

В данной статье мы рассмотрим, как сделать точные часы на базе Arduino или AVR-микроконтроллера микросхемы часов реального времени DS1307. Время будет выводиться на LCD дисплей.

Что необходимо

  • компьютер с установленной Arduino IDE;
  • микросхема DS1307 или модуль RTC на ее основе ;
  • комплектующие из списка элементов.

Вы можете заменить плату Arduino на контроллер Atmel, но убедитесь, что у него достаточно входных и выходных выводов и есть аппаратная реализация интерфейса I2C. Я использую ATMega168A-PU. Если вы будете использовать отдельный микроконтроллер, то вам понадобится программатор, например, AVR MKII ISP.

Предполагается, что читатель знаком с макетированием, программированием в Arduino IDE и имеет некоторые знания языка программирования C. Обе программы, приведенные ниже, не нуждаются в дополнительном разъяснении.

Введение

Как микроконтроллеры отслеживают время и дату? Обычный микроконтроллер обладает функцией таймера, который стартует от нуля при подаче напряжения питания, а затем начинает считать. В мире Arduino мы можем использовать функцию millis() , чтобы узнать, сколько прошло миллисекунд с того времени, когда было подано напряжение питания. Когда вы снимете и снова подадите питания, она начнет отсчет с самого начала. Это не очень удобно, когда дело доходит до работы с часами и датами.

Вот здесь и будет удобно использование микросхемы RTC (Real Time Clock, часов реального времени). Эта микросхема с батарейкой 3В или каким-либо другим источником питания следит за временем и датой. Часы/календарь обеспечивают информацию о секундах, минутах, часах, дне недели, дате, месяце и годе. Микросхема корректно работает с месяцами продолжительностью 30/31 день и с високосными годами. Связь осуществляется через шину I2C (шина I2C в данной статье не обсуждается).

Если напряжение на главной шине питания Vcc падает ниже напряжения на батарее Vbat, RTC автоматически переключается в режим низкого энергопотребления от резервной батареи. Резервная батарея - это обычно миниатюрная батарея (в виде «монетки», «таблетки») напряжением 3 вольта, подключенная между выводом 3 и корпусом. Таким образом, микросхема по-прежнему будет следить за временем и датой, и когда на основную схему будет подано питание, микроконтроллер получит текущие время и дату.

В этом проекте мы будем использовать DS1307. У этой микросхемы вывод 7 является выводом SQW/OUT (выходом прямоугольных импульсов). Вы можете использовать этот вывод для мигания светодиодом и оповещения микроконтроллера о необходимости фиксации времени. Мы будем делать и то, и другое. Ниже приведено объяснение работы с выводом SQW/OUT.

Для управления работой вывода SQW/OUT используется регистр управления DS1307.

Бит 7: управление выходом (OUT) Этот бит управляет выходным уровнем вывода SQW/OUT, когда выход прямоугольных импульсов выключен. Если SQWE = 0, логический уровень на выводе SQW/OUT равен 1, если OUT = 1, и 0, если OUT = 0. Первоначально обычно этот бит равен 0. Бит 4: включение прямоугольных импульсов (SQWE) Этот бит, когда установлен в логическую 1, включает выходной генератор. Частота прямоугольных импульсов зависит от значений битов RS0 и RS1. Когда частота прямоугольных импульсов настроена на значение 1 Гц, часовые регистры обновляются во время спада прямоугольного импульса. Первоначально обычно этот бит равен 0. Биты 1 и 0: выбор частоты (RS) Эти биты управляют частотой выходных прямоугольных импульсов, когда выход прямоугольных импульсов включен. Следующая таблица перечисляет частоты прямоугольных импульсов, которые могут быть выбраны с помощью данных битов. Первоначально обычно эти биты равны 1.

Данная таблица поможет вам с частотой:

Выбор частоты прямоугольных импульсов DS1307
Частота импульсов Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0
1 Гц 0 0 0 1 0 0 0 0
4,096 кГц 0 0 0 1 0 0 0 1
8,192 кГц 0 0 0 1 0 0 1 0
32,768 кГц 0 0 0 1 0 0 1 1

Если вы подключили светодиод и резистор к выводу 7 и хотите, чтобы светодиод мигал с частотой 1 Гц, то должны записать в регистр управления значение 0b00010000. Если вам нужны импульсы 4,096 кГц, то вы должны записать 0b000100001. В этом случае, чтобы увидеть импульсы вам понадобится осциллограф, так как светодиод будет мигать так быстро, что будет казаться, что он светится постоянно. Мы будем использовать импульсы с частотой 1 Гц.

Аппаратная часть

Ниже показана структурная схема того, что нам необходимо.

Мы нужны:

  • разъем ISP (In System Programming, внутрисхемное программирование) для прошивки микроконтроллера;
  • кнопки для установки времени и даты;
  • микроконтроллер для связи с RTC через шину I2C;
  • дисплей для отображения даты и времени.

Принципиальная схема:


Перечень элементов

Ниже приведен скриншот из Eagle:


Программное обеспечение

В этом руководстве мы будем использовать два различных скетча: один, который записывает время и дату в RTC, и один, который считывает время и дату из RTC. Мы сделали так потому, что так вы сможете получить более полное представление о том, что происходит. Мы будем использовать одну и ту же схему для обеих программ.

Сперва мы запишем время и дату в RTC, что аналогично установке времени на часах.

Мы используем две кнопки. Одну для увеличения часов, минут, даты, месяца, года и дня недели, а вторую для выбора между ними. Приложение не считывает состояния каких-либо критически важных датчиков, поэтому мы будем использовать прерывания для проверки, нажата ли кнопка, и обработки дребезга контактов.

Следующий код устанавливает значения и записывает их в RTC:

#include // Определение выводов LCD #define RS 9 #define E 10 #define D4 8 #define D5 7 #define D6 6 #define D7 5 LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Прерывание 0 – это вывод 4 микроконтроллера (цифровой вывод 2 Arduino) int btnSet = 0; // Прерывание 1 – это вывод 5 микроконтроллера (цифровой вывод 3 Arduino) int btnSel = 1; // Флаги прерываний volatile int togBtnSet = false; volatile int togBtnSel = false; volatile int counterVal = 0; // Переменные для отслеживания, где в "меню" мы находимся volatile int menuCounter = 0; // Массив значений volatile int menuValues; // 0=часы, 1=минуты, 2=день месяца, 3=месяц, 4=год, 5=день недели // Заголовки меню char* menuTitles = { "Set hour. ", "Set minute. ", "Set date. ", "Set month. ", "Set year. ", "Set day (1=mon)." }; // Массив дней недели char* days = { "NA", "Mon", "Tue", "Wed", "Thu", "Fre", "Sat", "Sun" }; void setup() { // Объявление прерываний, выполнение функций increaseValue/nextItem // по переднему фронту на btnXXX attachInterrupt(btnSet, increaseValue, RISING); attachInterrupt(btnSel, nextItem, RISING); Wire.begin(); lcd.begin(16,2); showWelcome(); } // Функция прерывания void increaseValue() { // Переменные static unsigned long lastInterruptTime = 0; // Создание метки времени unsigned long interruptTime = millis(); // Если timestamp - lastInterruptTime больше, чем 200 if (interruptTime - lastInterruptTime > 200) { togBtnSet = true; // Увеличить counterVal на 1 counterVal++; } // Установка lastInterruptTime равным метке времени // так мы знаем, что прошли дальше lastInterruptTime = interruptTime; } // Функция прерывания для следующего пункта меню void nextItem() { static unsigned long lastInterruptTime = 0; unsigned long interruptTime = millis(); if (interruptTime - lastInterruptTime > 200) { togBtnSel = true; // Увеличить счетчик меню, так мы переходим к следующему пункту меню menuCounter++; if (menuCounter > 6) menuCounter = 0; // Поместить counterVal в элемент массива счетчиков меню menuValues = counterVal; // Сбросить counterVal, сейчас мы начинаем с 0 для следующего пункта меню counterVal = 0; } lastInterruptTime = interruptTime; } // Функция преобразования десятичных чисел в двоично-десятичный код byte decToBCD(byte val) { return ((val/10*16) + (val%10)); } // Функция проверки, была ли нажата кнопки листания меню, // и обновления заголовка на дисплее. void checkCurrentMenuItem() { if (togBtnSel) { togBtnSel = false; lcd.setCursor(0,0); lcd.print(menuTitles); } } // Функция проверки, была ли нажата кнопка увеличения значения, // и обновления переменной в соответствующем элементе массива, // плюс вывод нового значения на дисплей. void checkAndUpdateValue() { // Проверить, если прерывание сработало = кнопка нажата if (togBtnSet) { // Обновить значение элемента массива с counterVal menuValues = counterVal; // Сбросить флаг прерывания togBtnSet = false; lcd.setCursor(7,1); // Напечатать новое значение lcd.print(menuValues); lcd.print(" "); } } // Короткое приветственное сообщение, теперь мы знаем, что всё нормально void showWelcome() { lcd.setCursor(2,0); lcd.print("Hello world."); lcd.setCursor(3,1); lcd.print("I"m alive."); delay(500); lcd.clear(); } // Запись данных в RTC void writeRTC() { Wire.beginTransmission(0x68); Wire.write(0); // начальный адрес Wire.write(0x00); // секунды Wire.write(decToBCD(menuValues)); // преобразовать минуты в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать часы в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать день недели в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать день месяца в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать месяц в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать год в BCD-код и записать Wire.write(0b00010000); // включить прямоугольные импульсы 1 Гц на выводе 7 Wire.endTransmission(); // закрыть передачу } // Показать время // Чтобы посмотреть, что RTC работает, вам необходимо посмотреть другую программу void showTime() { lcd.setCursor(0,0); lcd.print(" "); lcd.print(menuValues); lcd.print(":"); // часы lcd.print(menuValues); lcd.print(":"); lcd.print("00 "); // минуты lcd.setCursor(3,1); lcd.print(days); lcd.print(" "); // день недели lcd.print(menuValues); lcd.print("."); // дата lcd.print(menuValues); lcd.print("."); // месяц lcd.print(menuValues); lcd.print(" "); // год // вызов функции writeRTC writeRTC(); } void loop() { if (menuCounter < 6) { checkCurrentMenuItem(); checkAndUpdateValue(); } else { showTime(); } }

Эта программа начинается с короткого приветственного сообщения. Это сообщение говорит нам, что подано питание, LCD работает, и что программа запустилась. Так как скетч служит лишь для того, чтобы показать, как записать данные из Arduino в RTC DS1307, то в нем отсутствует вспомогательный функционал (проверка, попадают ли значения в допустимые диапазоны; зацикливание при нажимании на кнопку увеличения значения, то есть сброс на 0, когда значение, например, минут превысит 60, и т.д.)

// Включение заголовочных файлов #include #include // Определение выводов LCD #define RS 9 #define E 10 #define D4 8 #define D5 7 #define D6 6 #define D7 5 LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Вывод, который будет принимать импульсы от RTC volatile int clockPin = 0; // Переменные времени и даты byte second; byte minute; byte hour; byte day; byte date; byte month; byte year; // Массив дней недели char* days = { "NA", "Mon", "Tue", "Wed", "Thu", "Fre", "Sat", "Sun" }; // Функция, которая выполняется только при запуске void setup() { pinMode(clockPin, INPUT); pinMode(clockPin, LOW); Wire.begin(); lcd.begin(16,2); showWelcome(); } // Короткое приветственное сообщение, теперь мы знаем, что всё нормально void showWelcome() { lcd.setCursor(2,0); lcd.print("Hello world."); lcd.setCursor(3,1); lcd.print("I"m alive."); delay(500); lcd.clear(); } byte bcdToDec(byte val) { return ((val/16*10) + (val%16)); } // Это выполняется постоянно void loop() { // Если уровень на выводе clockPin высокий if (digitalRead(clockPin)) { // Начать передачу I2C, адрес 0x68 Wire.beginTransmission(0x68); // Начать с адреса 0 Wire.write(0); // Закрыть передачу Wire.endTransmission(); // Начать чтение 7 двоичных данных от 0x68 Wire.requestFrom(0x68, 7); second = bcdToDec(Wire.read()); minute = bcdToDec(Wire.read()); hour = bcdToDec(Wire.read()); day = bcdToDec(Wire.read()); date = bcdToDec(Wire.read()); month = bcdToDec(Wire.read()); year = bcdToDec(Wire.read()); // Форматирование и отображение времени lcd.setCursor(4,0); if (hour < 10) lcd.print("0"); lcd.print(hour); lcd.print(":"); if (minute < 10) lcd.print("0"); lcd.print(minute); lcd.print(":"); if (second < 10) lcd.print("0"); lcd.print(second); lcd.setCursor(2,1); // Форматирование и отображение даты lcd.print(days); lcd.print(" "); if (date < 10) lcd.print("0"); lcd.print(date); lcd.print("."); if (month < 10) lcd.print("0"); lcd.print(month); lcd.print("."); lcd.print(year); } }

Заключение

В данной статье мы рассмотрели микросхему DS1307 от Maxim Integrated и написали две демонстрационные программы: одну для установки времени и даты и вторую для чтения времени и даты. Для проверки нажатия кнопок мы использовали прерывания, в которых также избавлялись от влияния дребезга контактов.

Фото и видео

Установка времени

Считывание времени

Модуль часов реального времени DS1307
Tiny RTC I2C module 24C32 memory DS1307 clock

Небольшой модуль, выполняющий функции часов реального времени. Выполнен на базе микросхемы DS1307ZN+ . Непрерывный отсчет времени происходит благодаря автономному питанию от батареи, установленной в модуль. Также модуль содержит память EEPROM объемом 32 Кбайт, сохраняющую информацию при отключении всех видов питания. Память и часы связаны общей шиной интерфейса I2C. На контакты модуля выведены сигналы шины I2C. При подключении внешнего питания происходит подзарядка батареи через примитивную цепь подзарядки. На плате имеется место для монтажа цифрового датчика температуры DS18B20. В комплект поставки он не входит.
Использование этого устройства происходит при измерении временных интервалов более недели приборами на основе микроконтроллера. Задействовать собственные ресурсы МК для этой цели неоправданно, а зачастую невозможно. Обеспечить бесперебойное питание на длительный срок дорого, установить батарею для питания МК нельзя из-за значительного тока потребления. Тут на выручку приходит модуль часов реального времени DS1307.
Также модуль часов реального времени DS1307 благодаря наличию собственной памяти позволяет регистрировать данные событий, происходящих несколько раз в сутки, например измерения температуры. Журнал событий в дальнейшем считывается из памяти модуля. Эти возможности позволяют использовать модуль в составе автономной автоматической метеостанции или для исследований климата в труднодоступных местах: пещерах, вершинах скал. Становится возможным регистрировать тензопараметры архитектурных сооружений, например опор мостов и других. При оснащении прибора радиосвязью достаточно установить его в исследуемой местности.

Характеристики

Напряжение питания 5 В
Размеры 27 х 28 х 8,4 мм

Электрическая схема

Устройство обменивается данными с электроникой прибора с помощью сигналов SCL и SDA. Микросхема IC2 - часы реального времени. Конденсаторы С1 и С2 снижают уровень помех в линии питания VCC. Резисторы R2 и R3 обеспечивают надлежащий уровень сигналов SCL и SDA. С вывода 7 микросхемы IC2 поступает сигнал SQ, состоящий из прямоугольных импульсов частотой 1 Гц. Он используется для проверки работоспособности МС IC2. Компоненты R4, R5, R6, VD1 обеспечивают подзарядку батареи BAT1. Для хранения данных модуль часов реального времени DS1307 содержит микросхему IC1 - долговременная память. US1 - датчик температуры. Сигналы модуля и линии питания выведены на соединители JP1 и P1.

Информационная шина

I2C это стандартный последовательный интерфейс посредством двух сигнальных линий SCL, SDA и общего провода. Линии интерфейса образуют шину. К линиям интерфейса I2C можно подключить несколько микросхем, не только микросхемы модуля. Для идентификации микросхемы на шине, а именно записи данных в требуюмую МС и определения от какой МС поступают данные. Каждая микросхема имеет уникальный адрес для проложенной шины. DS1307 имеет Адрес 0x68. Он записан на заводе-изготовителе. Микросхема памяти имеет адрес 0x50. В программное обеспечение Arduino входит программная библиотека, обеспечивающая поддержку I2C.

Микросхема часов реального времени

DS1307 обладает низким энергопотреблением, обменивается данными с другими устройствами через интерфейс I2C, содержит память 56 байт. Содержит часы и календарь до 2100 г. Микросхема часов реального времени обеспечивает другие устройства информацией о настоящем моменте: секунды, минуты, часы, день недели, дата. Количество дней в каждом месяце учитывается автоматически. Есть функция компенсации для високосного года. Имеется флаг, чтобы определить, работают часы в 24-часовом режиме или 12-часовом режиме. Для работы в режиме 12 часов микросхема имеет бит, откуда считываются данные для передачи о периоде времени: до или после обеда.

Микросхема долговременной памяти

Рисунок модуля часов реального времени DS1307 со стороны батареи с установленным датчиком температуры U1.

Батарея

В держатель на обратной стороне платы устанавливается литиевая дисковая батарея CR2032. Она выпускается множеством производителей, например изготовленная фирмой GP обеспечивает напряжение 3,6 В и ток разряда 210 мАч. Батарея подзаряжается во время включения питания, с таким режимом работы литиевой батареи мы сталкиваемся на материнской плате компьютера.

Подзарядка батареи

Программное обеспечение

Для работы модуля в составе Arduino вполне подойдет устаревшая библиотека с сайта Adafruit под названием RTCLib. Скетч называется DS1307.pde. Существует обновленная версия . Следует скачать архив, распаковать его, переименовать и скопировать библиотеку в свой каталог библиотек Arduino.

Подключение к Arduino Mega

Для этого следует использовать скетчи
SetRTC устанавливает время в часах в соответствии со временем, которое указано в скетче.
GetRTC выводит время.
Оба скетча требуют библиотеку Wire и определить адрес I2C. Чтобы установить адрес часов на шине I2C, используйте этот I2C сканер .

Соединение с Arduino Mega.

Подключите SCL и SDA к соответствующим контактам 21 и 20 на Arduino Mega 2560. Подключите питание.

Соединение с Arduino Uno


Установите время в скетче SetRTC и загрузите в Arduino. Затем нажмите кнопку сброса для установки часов. Теперь загрузите скетч GetRTC. Откройте последовательный монитор и смотрите. Есть специальная библиотека времени . Она имеет много различных функций, которые могут быть полезны в зависимости от ситуации. Чтобы установить время, используя библиотеку нужно скачать . При использовании скетча можно синхронизировать часы реального времени с часами персонального компьютера.

Все, что вам нужно сделать, так это сконфигурировать RTC-чип в соответствии с текущей датой и временем … и сегодняшний проект поможет вам это сделать!

Проект

RTCSetup состоит из двух элементов:

  • графический интерфейс пользователя (GUI), написанный на языке C# и запущенный на ПК
  • скетч, запущенный на Arduino, к которому подключен модуль RTC

Графический интерфейс пользователя и скетч соединены по последовательному интерфейсу с помощью несложного протокола. Исходный код для них доступен в моем хранилище данных Github.

Arduino и часы реального времени

Для связи с чипом DS1307 я выбрал библиотеку RTClib хранилища Adafruit. Данный чип наиболее часто используется в модулях RTC энтузиастами со всего мира. Соединение между ИС и Arduino устанавливается с помощью шины I2 C :

На рисунке показано соединение, организованное с помощью “новых” выводов I2C платы Arduino Uno; естественно вы можете использовать выводы A4 и A5.

Скетч Arduino получает команды от ПК, выполняет их и посылает назад ответный сигнал.

Протокол

Как я указал ранее, для связи между графическим интерфейсом пользователя и Arduino используется несложный протокол, созданный с помощью только 4-х команд :

Команда: ##

Первая команда, отправленная после установления соединения, используется ПК для подтверждения “совместимости” модуля, подключенного к последовательному порту. Arduino должен ответить командой "!! "

Команда: ? V

Данная команда используется для получения версии скетча. Arduino отвечает строковым параметром, определенным как константа в начале скетча :

#define VERSION "1.0"

Команда: ? T

Данная команда, используемая для получения фактической даты и времени, считывается из модуля RTC. Плата Arduino отвечает строковым параметром в формате: dd/ MM/ yyyy hh: mm: ss .

Команда: ! TddMMyyyyhhmmss

Данная команда используется для установки времени RTC. Arduino отвечает командой "OK" .

Графический интерфейс пользователя (GUI)

Графический интерфейс пользователя, разработанный на C#, общается с Arduino по вышеуказанному протоколу и выполняет три функции:

  • устанавливает текущую дату и время
  • устанавливает требуемую дату и время, которые определяет пользователь
  • получает и отображает фактическую дату и время модуля RTC.

Сначала вам необходимо выбрать последовательный порт Arduino для установки соединения и нажать кнопку CONNECT. Если соединение установлено (команды ## и?V), тогда в строке состояния будет отображаться версия скетча.

В первом окне будет показано фактическое время ПК . После нажатия правой кнопки мыши (на красной стрелке) вы сможете сконфигурировать модуль RTC с данным временем:

С помощью кнопки с зеленой стрелкой вы сможете получить фактическое время, хранимое в модуле RTC:

И, наконец, с помощью выпадающего списка даты в центре, вы сможете выбрать требуемое значение даты и времени, и затем отправить эти значения в модуль RTC:

Технические данные

Я использовал метод, описанный в данном учебном руководстве , для внедрения пользовательского шрифта в приложение.